Abstract
In this paper a dissipative exponentially-fitted method for the numerical integration of the Schrödinger equation and related problems is developed. The method is called dissipative since is a nonsymmetric multistep method. An application to the the resonance problem of the radial Schrödinger equation and to other well known related problems indicates that the new method is more efficient than the corresponding classical dissipative method and other well known methods. Based on the new method and the method of Raptis and Cash a new variable-step method is obtained. The application of the new variable-step method to the coupled differential equations arising from the Schrödinger equation indicates the power of the new approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.