Abstract
This paper presents the development of low-cost, disposable impedance-based sensors for real-time, in-line monitoring of suspension cell culture. The sensors consist of electrical discharge machining (EDM) cut aluminum electrodes and polydimethylsiloxane (PDMS) spacers, both of which are low-cost materials that can be safely disposed of. Our research demonstrates the capability of these low-cost sensors for in-line, non-invasive monitoring of suspension cell growth in cell manufacturing. We use a hybrid equivalent circuit model to extract key features/parameters from intertwined impedance signals, which are then fed to a novel physics-inspired (gray-box) model designed for α-relaxation. This model determines viable cell count (VCC), a critical quality attribute (CQA) in cell manufacturing. Predicted VCC trends are then compared with image-based cell count data to verify their accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.