Abstract

The development of an ion-selective electrode heparin sensor consisting of a specially formulated polymer membrane doped with tridodecylmethylammonium chloride as the heparin complexing agent was recently reported. Because of the simple nature of the membrane technology used, the authors envisioned that the sensor could be configured as a disposable single-use device for rapid clinical or bedside measurement of heparin in a small, discrete sample. To explore this possibility, an inexpensive, disposable heparin sensor was created by dip-coating a copper wire with the specially formulated heparin-sensing polymeric membrane. Coated wire heparin sensors with a broad range of membrane thicknesses, prepared by repeatedly dipping the wire in the membrane solution for various times, were examined. Data show that increasing the membrane thickness of the sensor to a certain degree (more than 10 microns) enhanced the sensor's potentiometric response to heparin, although the time required to achieve 90% of the steady-state potential change was also prolonged. In addition, increasing membrane thickness also magnified the stirring effect on the sensor's response. In undiluted plasma samples, the coated-wire sensor with an optimized membrane thickness yielded a significant (5 to 30 mV) and reproducible response to heparin in a clinically relevant concentration range (0.5 to 12 units/ml, respectively). The clinical utility of the coated wire heparin sensor was shown using the sensor during protamine titration of heparinized plasma to assess the titration end-point. Preliminary results showed that the titration end-points determined by the heparin sensor strongly correlated with those determined by the activated partial thromboplastin time clotting assay. The overall time requirement to complete the titration process using a set of prefabricated coated wire heparin sensors, however, was less than 3 minutes. Further titration studies using undiluted clinical whole blood samples are in progress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.