Abstract

Requirements for a point-of-care device are an easy and robust read-out and – above all – a simple handling. We integrated an established robust electrical read-out for DNA-chips into a microfluidic device, thereby creating an automated analysis system that combines the necessary steps for a chip-based analysis. It is based on the electrical detection of biotin-labeled DNA in a gap between two microstructured electrodes on the surface of a DNA-chip. The biotin serves as binding molecule for streptavidin-conjugated horseradish peroxidase. A following enzyme-induced silver deposition bridges the gap by a conductive layer. The miniaturized chip gives the possibility to realize a durable system suitable for point-of-care applications. To enable an initial automation, all corresponding process steps were executed in a miniaturized silicone flow cell. The required defined temperatures for the hybridization and the washing steps can be adjusted by a heating foil. This paper characterizes the performance of the flow cell based system in terms of reaction speed and analysis time, sensitivity as well as specificity, and the comparison to a conventional system, without flow cell. These first steps of automation and integration will help to realize a laboratory-independent bioanalytical tool, for the use outside of specialized laboratories for fast analysis of different chemical and biological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.