Abstract

There are various useful metrics for finding the distance between two points in Euclidean space. Metrics for finding the distance between two rigid body locations in Euclidean space depend on both the coordinate frame and units used. A metric independent of these choices is desirable. This paper presents a metric for a finite set of rigid body displacements. The methodology uses the principal frame (PF) associated with the finite set of displacements and the polar decomposition to map the homogenous transform representation of elements of the special Euclidean group SE(N-1) onto the special orthogonal group SO(N). Once the elements are mapped to SO(N) a bi-invariant metric can then be used. The metric obtained is thus independent of the choice of fixed coordinate frame i.e. it is left invariant. This metric has potential applications in motion synthesis, motion generation and interpolation. Three examples are presented to illustrate the usefulness of this methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.