Abstract
We propose a dispersion flattened fiber (DFF) front-haul transmission system with high bitrate, polarization multiplexing (PM) and quadrature amplitude modulation (QAM) signal at low input optical power. The modulation format of the system is PM-16QAM, and the bitrate is 256 Gbit/s. The transmission characteristics over DFF link system are experimentally studied, which are compared with those over non-zero dispersion shifted fiber (NZDSF) link and standard single mode fiber (SSMF) link. The experimental results show that the error vector magnitude (EVM) of 256 Gbit/s and PM-16QAM signal over 25 km DFF link is 0.75% better than that over 25 km NZDSF link at least, and the bit error rate (BER) and Q-factor are much better than those of NZDSF. Their EVM and BER are both decreased with the increase of input optical power, and the Q-factor is increased. Those characteristics over 25 km SSMF are the worst at the same case. The larger the dispersion is, the more the constellation points are deviated from their respective centers and the worse the constellation characteristics are. The greater the attenuation of the DFF is, the smaller the input power of the DFF is, the more the constellation points are deviated from their centers and the worse the constellation characteristics are. This study provides a new idea and experimental support for long span front-haul propagation in mobile communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.