Abstract

A numerical dispersion analysis for the finite-element (FE) method in time domain (TD) is presented. The dispersion relation is analitically derived by considering a time-harmonic plane wave propagating through an infinite uniform mesh consisting of equilateral triangular elements. The effect of the time step on the numerical dispersion is investigated and it is shown that, if linear tangential-linear normal (LT-LN) edge-basis functions are used, there exists a time-step value that minimizes the deviation of the dispersion relation from the ideal linear case. In particular, the analysis performed shows that this optimum time step holds for any propagation direction of the plane wave within the mesh and, virtually, for any frequency, strongly enhancing numerical accuracy of the FE-TD method. As a working example, we choose to compare the numerically computed TE modes of two-dimensional guiding structures with the corresponding analytical values; to this end, an efficient procedure for the computation of the eigenfrequencies is proposed, allowing us to avoid TD data processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.