Abstract
A new dislocation model is constructed on the basis of various characteristics of dislocations revealed by X-ray diffraction topography, for interpreting plastic deformation behaviour of ice single crystals in basal glide. The model of a pair of screw dislocation arrays of opposite sign exhibits resistance for the movement, which depends upon both the configuration and the stress. Orowan's relation between the macroscopic strain rate and characteristic of dislocations in the crystal (density and velocity) is rewritten in a dynamical style taking into account the resisting stress and the empirically established linear relationship between the dislocation velocity and the stress. In this formulation, a new concept of fractional dislocation density is introduced. Examples of fractional density as a function of maximum stress are obtained from our stress relaxation experiments. Assuming that the initial fractional density profile for a fresh ice single crystal is similar to those obtained above, stress-strain curves are calculated numerically for various crosshead speeds of the test machine. Computed results coincide well with the characteristic stress-strain curves previously obtained experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.