Abstract
The primary and secondary creep behavior of single crystals is observed by a material model using evolution equations for dislocation densities on individual slip systems. An interaction matrix defines the mutual influence of dislocation densities on different glide systems. Face-centered cubic (fcc), body-centered cubic (bcc) and hexagonal closed packed (hcp) lattice structures have been investigated. The material model is implemented in a finite element method to analyze the orientation dependent creep behavior of two-phase single crystals. Three finite element models are introduced to simulate creep of a γ′ strengthened nickel base superalloy in 〈1 0 0〉, 〈1 1 0〉 and 〈1 1 1〉 directions. This approach allows to examine the influence of crystal slip and cuboidal microstructure on the deformation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.