Abstract
This paper presents a dislocation-based yield strength model for the nano-indentation size effect. The model is based on functional expressions involving the densities of statistically stored dislocations and geometrically necessary dislocations. A single-phase austenitic stainless steel (316L) and a ferrite-austenite dual-phase steel (2205) are used here as the case-study materials to validate the proposed model. Experimental testing and finite element modelling of nano-indentation of the two materials are presented. Experimental tests are performed in the indentation load range from 1000[Formula: see text] to 10000[Formula: see text]. For 2205 steel, finite element modelling is performed using a dual-phase microstructure-based model. It is shown that, with consideration of statistically stored dislocations and geometrically necessary dislocations, finite element modelling results can reproduce measured load–displacement curves and hence, the size effect, within an error range of about 5%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.