Abstract

Variational Analysis studies mathematical objects under small variations. With regards to optimization, these objects are typified by representations of first-order or second-order information (gradients, subgradients, Hessians, etc). On the other hand, Derivative-Free Optimization studies algorithms for continuous optimization that do not use first-order information. As such, researchers might conclude that Variational Analysis plays a limited role in Derivative-Free Optimization research. In this paper we argue the contrary by showing that many successful DFO algorithms rely heavily on tools and results from Variational Analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.