Abstract
Hidden Markov Models (HMMs) are very popular generative models for sequence data. Recent work has, however, shown that on many tasks, Conditional Random Fields (CRFs), a type of discriminative model, perform better than HMMs. We propose Hierarchical Hidden Conditional Random Fields (HHCRFs), a discriminative model corresponding to hierarchical HMMs (HHMMs). HHCRFs model the conditional probability of the states at the upper levels given observations. The states at the lower levels are hidden and marginalized in the model definition. We have developed two algorithms for the model: a parameter learning algorithm that needs only the states at the upper levels in the training data and the marginalized Viterbi algorithm, which computes the most likely state sequences at the upper levels by marginalizing the states at the lower levels. In an experiment that involves segmenting electroencephalographic (EEG) data for a Brain-Computer Interface, HHCRFs outperform HHMMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.