Abstract

This paper is concerned with a discrete-time Geo/G/1 retrial queue with preferred, impatient customers and general retrial times. We analyze the Markov chain underlying the considered queueing system and derive its ergodicity condition. The system state distribution as well as the orbit size and the system size distributions are obtained in terms of their generating functions. These generating functions yield exact expressions for different performance measures. Besides, the stochastic decomposition property and the corresponding continuous-time queueing system are investigated. Finally, some numerical examples are provided to illustrate the effect of priority and impatience on several performance characteristics of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.