Abstract

A one-dimensional discrete-sectional model has been developed to simulate particle growth in aerosol reactors. Two sets of differential equations for volume and surface area, respectively, were solved simultaneously to determine the size distributions of agglomerates and primary particles. The surface area equations were derived in such a way that the coagulation integrals calculated for the volume equations could be used for the surface area equations as well, which is new in this model. The model was applied to a production of TiO2 particles by oxidation of titanium tetrachloride. Model predictions were compared with experimental data and those of a two-dimensional sectional model. Good agreement was shown in calculated particle size distributions between the present model and the two-dimensional model, which is more rigorous but demands a large amount of computer time and memory. Compared to experimental data, the primary particle size calculated by the model was more sensitive to the variation of reactor temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.