Abstract
A recent approach to generate a zero divergence velocity field by operating directly on the discretized Navier-Stokes equations is used to obtain the decoupling of the pressure from the velocity field. By following the methodology suggested by Amit, Hall, and Porsching the feasibility of treating three dimensional flows and multiply connected domains is analyzed. The present model keeps the main features of the classical vector potential method in that it generates a divergence-free velocity field through an algebraic manipulation of the discrete equations. At the same time the boundary conditions are still imposed on the discrete values of the primitive variables. The accuracy of the method is tested against the exact solution for a recirculating unsteady flow both in simply and doubly connected domains. Several applications to flow fields in three-dimensional enclosures or in multiply connected domains are presented and discussed in terms of accuracy and efficiency of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.