Abstract

In this paper, a discrete unified gas kinetic scheme (DUGKS) with a sparse grid method applied in velocity space (DUGKS-SG) is proposed for simulating rarefied gas flows. The DUGKS-SG decomposes the computationally demanding problem into smaller and independent subproblems, thereby reducing the computational costs and exhibiting good parallelism. Several numerical tests, including the two-dimensional Riemann problem and the lid-driven microcavity flow, have been conducted to validate the performance of the DUGKS-SG. Comparisons with the original DUGKS and the Direct Simulation Monte Carlo (DSMC) method demonstrate that DUGKS-SG can provide satisfactory results with improved efficiency. Specifically, a maximum speedup of 9.486 for a 2D case with 7 CPU cores and 13.035 for a 3D case with 8 CPU cores can be achieved. These results suggest that the proposed DUGKS-SG can serve as an efficient numerical method for rarefied gas flow simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.