Abstract

This paper treats a discrete-time single-server retrial queue with geometrical arrivals of both positive and negative customers in which the server is subject to breakdowns and repairs. Positive customers who find sever busy or down are obliged to leave the service area and join the retrial orbit. They request service again after some random time. If the server is found idle or busy, the arrival of a negative customer will break the server down and simultaneously kill the positive customer under service if any. But the negative customer has no effect on the system if the server is down. The failed server is sent to repair immediately and after repair it is assumed as good as new. We analyze the Markov chain underlying the queueing system and obtain its ergodicity condition. The generating functions of the number of customers in the orbit and in the system are also obtained along with the marginal distributions of the orbit size when the server is idle, busy or down. Finally, some numerical examples show the influence of the parameters on some crucial performance characteristics of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call