Abstract

In this paper, we construct and analyze a mathematically reasonable and simplest population dynamics model based on Mark Granovetter’s idea for the spread of a matter (rumor, innovation, psychological state, etc.) in a population. The model is described by a one-dimensional difference equation. Individual threshold values with respect to the decision-making on the acceptance of a spreading matter are distributed throughout the population ranging from low (easily accepts it) to high (hardly accepts). Mathematical analysis on our model with some general threshold distributions (uniform; monotonically decreasing/increasing; unimodal) shows that a critical value necessarily exists for the initial frequency of acceptors. Only when the initial frequency of acceptors is beyond the critical, the matter eventually spreads over the population. Further, we give the mathematical results on how the equilibrium acceptor frequency depends on the nature of threshold distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.