Abstract

We provide rigorous and exact results characterizing the statistics of spike trains in a network of leaky Integrate-and-Fire neurons, where time is discrete and where neurons are submitted to noise, without restriction on the synaptic weights. We show the existence and uniqueness of an invariant measure of Gibbs type and discuss its properties. We also discuss Markovian approximations and relate them to the approaches currently used in computational neuroscience to analyse experimental spike trains statistics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.