Abstract

The bidirectional Fano algorithm (BFA) can achieve at least two times decoding throughput compared to the conventional unidirectional Fano algorithm (UFA). In this paper, bidirectional Fano decoding is examined from the queuing theory perspective. A Discrete Time Markov Chain (DTMC) is employed to model the BFA decoder with a finite input buffer. The relationship between the input data rate, the input buffer size and the clock speed of the BFA decoder is established. The DTMC based modelling can be used in designing a high throughput parallel BFA decoding system. It is shown that there is a trade-off between the number of BFA decoders and the input buffer size, and an optimal input buffer size can be chosen to minimize the hardware complexity for a target decoding throughput in designing a high throughput parallel BFA decoding system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call