Abstract

The discretized equations of motion for elastic systems are typically displayed in second-order form. That is, the elastic displacements are represented by a set of discretized (generalized) coordinates, such as those used in a finite-element method, and the elastic rates are simply taken to be the time-derivatives of these displacements. Unfortunately, this approach leads to unpleasant and computationally intensive inertial terms when rigid rotations of a body must be taken into account, as is so often the case in multibody dynamics. An alternative approach, presented here, assumes the elastic rates to be discretized independently of the elastic displacements. The resulting dynamical equations of motion are simplified in form, and the computational cost is correspondingly lessened. However, a slightly more complex kinematical relation between the rate coordinates and the displacement coordinates is required. This tack leads to what may be described as a discrete quasi-coordinate formulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.