Abstract
This paper proposes a discrete particle swarm optimization (DPSO) algorithm for the m-machine permutation flowshop scheduling problem with blocking to minimize the makespan, which has a strong industrial background, e.g., many production processes of chemicals and pharmaceuticals in chemical industry can be reduced to this problem. To prevent the DPSO from premature convergence, a self-adaptive diversity control strategy is adopted to diversify the population when necessary by adding a random perturbation to the velocity of each particle according to a probability controlled by the diversity of the current population. In addition, a stochastic variable neighborhood search is used as the local search to improve the search intensification. Computational results using benchmark problems show that the proposed DPSO algorithm outperforms previous algorithms proposed in the literature and that it can obtain 111 new best known upper bounds for the 120 benchmark problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.