Abstract
Dividing the set of nodes into clusters in the well-known traveling salesman problem results in the generalized traveling salesman problem which seeking a tour with minimum cost passing through only a single node from each cluster. In this paper, a discrete particle swarm optimization is presented to solve the problem on a set of benchmark instances. The discrete particle swarm optimization algorithm exploits the basic features of its continuous counterpart. It is also hybridized with a local search, variable neighborhood descend algorithm, to further improve the solution quality. In addition, some speed-up methods for greedy node insertions are presented. The discrete particle swarm optimization algorithm is tested on a set of benchmark instances with symmetric distances up to 442 nodes from the literature. Computational results show that the discrete particle optimization algorithm is very promising to solve the generalized traveling salesman problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.