Abstract

Polycrystalline materials may suffer internal damage due to diffusion of chemically aggressive species during service. Diffusion rates are greatly enhanced on grain boundaries (GB). This can be modelled with discrete networks, where the GB structure is represented by links with local diffusivities. We present a site-bond model for concentration-driven diffusion that can be used to study the accumulation of chemical species at GB, leading to deterioration and eventual cracking. We employ realistic distributions of GB energies and corresponding diffusivities from published works. We show how the model can be used to predict macroscopic diffusivities with little experimentation. We demonstrate how the grain boundary structure controls the extent of internal damage resulting from the diffusion of chemical species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.