Abstract

We consider probability mass functions $V$ supported on the positive integers using arguments introduced by Caputo, Dai Pra and Posta, based on a Bakry--\'{E}mery condition for a Markov birth and death operator with invariant measure $V$. Under this condition, we prove a modified logarithmic Sobolev inequality, generalizing and strengthening results of Wu, Bobkov and Ledoux, and Caputo, Dai Pra and Posta. We show how this inequality implies results including concentration of measure and hypercontractivity, and discuss how it may extend to higher dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.