Abstract
To solve the fault classification problems of fuel cell (FC) various health states for tramways, a discrete hidden Markov model (DHMM) fault diagnosis strategy based on K-means clustering is proposed. In this paper, the K-means clustering algorithm is used to filter the sample points which aren't consistent with the actual class labels. The Lloyd algorithm is employed to quantify the sample vector sets and obtain the discrete code combination of training samples and test samples. The Baum-Welch algorithm and forward-backward algorithm are respectively presented to train and deduce the DHMM. The classification results show that the six concerned faults can be detected and isolated. The targeted fault types include low air pressure, deionized glycol high inlet temperature, deionized humidification pump low pressure, deionized glycol outlet temperature signal voltage overrange, normal state and hydrogen leakage. The fault recognition rates with the novel approach are at best 94.17%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.