Abstract

We consider a class of numerical approximations to the Caputo fractional derivative. Our assumptions permit the use of nonuniform time steps, such as is appropriate for accurately resolving the behavior of a solution whose temporal derivatives are singular at $t=0$. The main result is a type of fractional Grönwall inequality and we illustrate its use by outlining some stability and convergence estimates of schemes for fractional reaction-subdiffusion problems. This approach extends earlier work that used the familiar L1 approximation to the Caputo fractional derivative, and will facilitate the analysis of higher order and linearized fast schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.