Abstract

A discrete filled function algorithm is proposed for approximate global solutions of max-cut problems. A new discrete filled function is defined for max-cut problems and the properties of the filled function are studied. Unlike general filled function methods, using the characteristic of max-cut problems, the parameters in proposed filled function need not be adjusted. This greatly increases the efficiency of the filled function method. By combining a procedure that randomly generates initial points for minimization of the filled function, the proposed algorithm can greatly reduce the calculation cost and be applied to large scale max-cut problems. Numerical results on different sizes and densities test problems indicate that the proposed algorithm is efficient and stable to get approximate global solutions of max-cut problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.