Abstract

This paper presents a mathematical model for the train dynamics in a mass-transit metro line system with one symmetrically operated junction. We distinguish three parts: a central part and two branches. The tracks are spatially discretized into segments (or blocks) and the train dynamics are described by a discrete event system where the variables are the $k^{th}$ departure times from each segment. The train dynamics are based on two main constraints: a travel time constraint modeling theoretic run and dwell times, and a safe separation constraint modeling the signaling system in case where the traffic gets very dense. The Max-plus algebra model allows to analytically derive the asymptotic average train frequency as a function of many parameters, including train travel times, minimum safety intervals, the total number of trains on the line and the number of trains on each branch. This derivation permits to understand the physics of traffic. In a further step, the results will be used for traffic control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.