Abstract
Efficient simulation techniques for a discrete-event pulsed neural network simulator are developed. In a discrete-event simulation framework, simulation of complex neural behaviours, such as phase precession and phase arbitration, demands the prediction of delayed firing times. The new technique, the incremental partitioning method, uses linear envelopes of the state variable of a neuron to partition the simulated time so that the delayed-firing time is reliably calculated by applying the bisection-combined Newton-Raphson method to every partition. The quick filtering technique is also proposed for reducing calculation cost of linear envelopes. The simulator developed, Punnets, has achieved efficiency and precision, but is still capable of simulating a complex behaviour of large-scale neural network models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.