Abstract

The paper describes an advanced discrete-element based mechanical model, which allows modelling contact interaction of ductile materials with taking into account fracture and surface adhesion by the cold welding mechanism. The model describes these competitive processes from a unified standpoint and uses plastic work of deformation as a criterion of both local fracture and chemical bonding of surfaces in contact spots. Using this model, we carried out a preliminary study of the formation of wear particles and wedges during the friction of rough metal surfaces and the influence of the type of forming third body (interfacial) elements on the dynamics of the friction coefficient. The qualitative difference of friction dynamics in the areas of the contact zone characterized by different degrees of mechanical confinement is shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.