Abstract

The max-cut problem is a classical NP-hard problem in graph theory. In this paper, we adopt a local search method, called MCFM, which is a simple modification of the Fiduccia-Mattheyses heuristic method in Fiduccia and Mattheyses (Proc. ACM/IEEE DAC, pp. 175–181, 1982) for the circuit partitioning problem in very large scale integration of circuits and systems. The method uses much less computational cost than general local search methods. Then, an auxiliary function is presented which has the same global maximizers as the max-cut problem. We show that maximization of the function using MCFM can escape successfully from previously converged discrete local maximizers by taking increasing values of a parameter. An algorithm is proposed for the max-cut problem, by maximizing the auxiliary function using MCFM from random initial solutions. Computational experiments were conducted on three sets of standard test instances from the literature. Experimental results show that the proposed algorithm is effective for the three sets of standard test instances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.