Abstract

The more practical and interesting versions of the permutation flowshop scheduling problem (PFSP) have a variety of objective criteria to be optimized simultaneously. Multi-objective PFSP is also a relevant combinatorial multi-objective optimization problem. In this paper we propose a multi-objecti ve evolutionary algorithm for PFSP by extending the previously proposed discrete differential evolution (DE) scheme for single-objective PFSP. This is the first application of the algebraic-based discrete DE to multi-objective problems. The algorithm is extended by adopting a variety of crossover and multi-objective selection operators. Among these, the multi-objective α-selection is a novelty of this work and can be decoupled from DE and used also in other evolutionary algorithms. The other crossover and selection operators have been taken from the existing literature and, where required, have been adapted to the problem at hand. An experimental evaluation has been conducted on all the three bi-objective PFSPs among the makespan, total flowtime and total tardiness criteria. The results show that the proposed approach is competitive with respect to the state-of-the-art algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call