Abstract

Differential evolution has a long track record of successfully solving optimization problems in continuous domain due it its powerful Euclidean distance-based learning concept. Although this affects its suitability for solving several problems with permutation variables, several studies show that it can be applicable for effectively solving permutation-based problems. In this paper, an improved design of differential evolution is introduced to solve a military fleet modernization problem with discrete parameters. In this problem, several modernization oper-ations are required to transition a military force from an outdated fleet to a more modern one with the objective of maximizing the force's deployment at the minimum cost over a pre-determined planning period. The proposed differential evolution incorporates a new solution representation, a proposed repairing heuristic method, a modified mutation operator and mapping method for efficiently tackling the discrete characteristics of the targeted problem and is coupled with a simulation model to evaluate the fitness of the generated solutions. To judge its performance, the proposed algorithm has been implemented to solve a case study that addresses recent fleet modernization strategies of the Australian Army to recapitalize its forces over the next decade and in a continual process. The experimental results show that the proposed algorithm can provide more efficient fleet modernization schedules which are 29.32% and 51.43% better than those obtained by other two comparative algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.