Abstract
Let {Wi} be a standard enumeration of all recursively enumerable (r.e.) sets, and for any class A of r.e. sets, let θA denote the index set of A = {n ∣ Wn ∈ A}. (Clearly, .) In [1], the index sets of nonempty finite classes of finite sets were classified under one-one reducibility into an increasing sequence {Ym}, 0 ≤ m < ∞. In this paper we examine further properties of this sequence within the partial ordering of one-one degrees of index sets. The main results are as follows: (1) For each m, Ym < Ym + 1 and < Ym + 1; (2) Ym is incomparable to ; (3) Ym + 1 and ; are immediate successors (among index sets) of Ym and m; (4) the pair (Ym + 1, ) is a “least upper bound” for the pair (Ym, ) in the sense that any successor of both Ym and is ≥ Ym + 1or; (5) the pair (Ym, ) is a “greatest lower bound” for the pair (Ym + 1, ) in the sense that any predecessor of both Ym + 1 and is ≤ Ym or . Since and all Ym are in the bounded truth-table degree of K, this yields some local information about the one-one degrees of index sets which are “at the bottom” in the one-one ordering of index sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.