Abstract

With the development of digital multimedia technologies, image matting has become one of the most popular research problem in academic field and been widely applied in industrial communities. The key challenge of image matting is how to extract the foreground region (target region) from a given image accurately. Sampling-based image matting technology implements matting by sampling some foreground pixels and background pixels from known regions and finding the best foreground–background sample pair for every undetermined pixel. The best foreground–background sample pair represents the true foreground and background colors of the corresponding undetermined pixel and they can estimate the region of this undetermined pixel accurately. Therefore, the quality of matting depends on whether the best sample pair can be found. This search process can be regarded as a combinational optimization problem. In this paper, in order to obtain more accurate matting result, we applied a bio-inspired metaheuristic algorithm to solve this problem, which is based on the promising earthworm optimization algorithm (EWA). By analyzing the property of this optimization problem, we upgrade two reproductions and the cauchy mutation of EWA to discrete calculations. The proposed algorithm is called as the discrete earthworm optimization algorithm (D-EWA). By comparing with existing optimization algorithms on a standard benchmark dataset, the experimental results show that the proposed D-EWA can obtain more accurate matting results on both visual effect and quantitative metric.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call