Abstract

A Galerkin projection based on non-standard bases is conceived to derive an equivalent discrete model of a continuous system under non-conservative forces. The problem of deriving a discrete model capable of describing critical and post-critical scenarios for non-selfadjoint systems is discussed and an heuristic rule for a proper choice of trial functions is given. The procedure is utilized to analyze the effect of non-conservative autonomous and non-autonomous (pulsating) forces acting on a linearly damped Beck’s column involving geometrical nonlinearities. The linear and nonlinear behaviours arising from the analysis of the proposed discrete model are in good agreement with those observed through the unavoidably more involved direct continuous approach. Critical scenarios for the autonomous and non-autonomous cases are investigated and the multiple scales method is applied in order to obtain the bifurcation equations in the neighborhood of a Hopf bifurcation point in primary parametric resonance. A comparison between critical and post-critical continuous and discrete model is performed adopting two control parameters, namely the amplitudes of the static and dynamic components of the forces, playing the role of detuning and bifurcation parameters, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.