Abstract

In this note we prove a discrete analogue to the following Paley–Weiner theorem: Let f be the restriction to the line of a bounded analytic function in the upper half plane; then the spectrum of f is contained in ([0, ∈). The discrete analogue of complex analysis is the theory of discrete analytic functions invented by Lelong-Ferrand (1944) and developed by Duffin (1956) and others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.