Abstract

In this work, we derive a discrete action principle for electrodynamics that can be used to construct explicit symplectic integrators for Maxwell’s equations. Different integrators are constructed depending on the choice of discrete Lagrangian used to approximate the action. By combining discrete Lagrangians in an explicit symplectic partitioned Runge–Kutta method, an integrator capable of achieving any order of accuracy is obtained. Using the von Neumann stability analysis, we show that the integrators greatly increase the numerical stability and reduce the numerical dispersion compared to other methods. For practical purposes, we demonstrate how to implement the integrators using many features of the finite-difference time-domain method. However, our approach is also applicable to other spatial discretizations, such as those used in finite element methods. Using this implementation, numerical examples are presented that demonstrate the ability of the integrators to efficiently reduce and maintain a minimal amount of numerical dispersion, particularly when the time-step is less than the stability limit. The integrators are therefore advantageous for modeling large, inhomogeneous computational domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.