Abstract

According to the cosmological principle, the sky brightness at any frequency should appear uniform in all directions to an observer considered to be fixed in the co-moving coordinate system of the expanding universe. However a peculiar motion of the observer introduces a dipole anisotropy in the observed sky brightness, which should be independent of the observing frequency. We have examined the angular distribution in the radio-sky brightness, i.e., an integrated emission from discrete sources per unit solid angle, from the NVSS sample containing 1.8 million discrete radio sources at 1.4 GHz. Our results give a dipole anisotropy which is in the same direction as that of the CMBR from the COBE or WMAP, but the magnitude we find is about 4 times larger at a statistically significant (about 3σ) level. A genuine difference between the two dipoles cannot arise from the observer's motion alone, and it would imply intrinsically anisotropic universe, with anisotropy changing with the epoch. This would violate the cosmological principle where isotropy of the universe is assumed for all epochs, and on which the whole modern cosmology is based upon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.