Abstract

Buying a house is not only an emotional desire, but also a popular investment option. However, housing markets lack of tools and relevant systems of complete evaluation for house values. To this end, in this paper, we provide a discovery system for finding high-value homes. Unlike traditional housing price models, the proposed discovery system has taken both urban geography information and human mobility information into consideration. In this system, a suite of data mining functions have been developed to identify human mobility patterns by exploring human location traces as well as the interactions between human and Point of Interests (POIs). Given a set of candidate houses, the system can produce a ranked list of top-k high-value houses. Specifically, this demo system provides various application functions. First, it can support decision making of home buyers. Second, it can help home sellers to optimize their pricing strategies. Finally, it can help real estate developers for site selection, and thus help urban planning as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.