Abstract

In this article, we describe a discontinuous finite volume method with interpolated coefficients for the numerical approximation of the distributed optimal control problem governed by a class of semilinear elliptic equations with control constraints. The proposed distributed control problem involves three unknown variable: control, state and costate. For the approximation of control, we have adopted three different methodologies: variational discretization, piecewise constant and piecewise linear discretization, while the approximation of state and costate variables is based on discontinuous piecewise linear polynomials. As the resulted scheme is non‐symmetric, optimize‐then‐discretize approach is used to approximate the control problem. Optimal a priori error estimates in suitable natural norms for state, costate and control variables are derived. Moreover, numerical experiments are presented to support the derived theoretical results. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2090–2113, 2017

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call