Abstract
There have been many theoretical studies and numerical investigations of nonlocal diffusion (ND) problems in recent years. In this paper, we propose and analyze a new discontinuous Galerkin method for solving one-dimensional steady-state and time-dependent ND problems, based on a formulation that directly penalizes the jumps across the element interfaces in the nonlocal sense. We show that the proposed discontinuous Galerkin scheme is stable and convergent. Moreover, the local limit of such DG scheme recovers classical DG scheme for the corresponding local diffusion problem, which is a distinct feature of the new formulation and assures the asymptotic compatibility of the discretization. Numerical tests are also presented to demonstrate the effectiveness and the robustness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications on Applied Mathematics and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.