Abstract
This article proposes a discontinuous Galerkin method for solving model equations describing isothermal non-reactive and reactive chromatography. The models contain a system of convection–diffusion–reaction partial differential equations with dominated convective terms. The suggested method has capability to capture sharp discontinuities and narrow peaks of the elution profiles. The accuracy of the method can be improved by introducing additional nodes in the same solution element and, hence, avoids the expansion of mesh stencils normally encountered in the high order finite volume schemes. Thus, the method can be uniformly applied up to boundary cells without loosing accuracy. The method is robust and well suited for large-scale time-dependent simulations of chromatographic processes where accuracy is highly demanding. Several test problems of isothermal non-reactive and reactive chromatographic processes are presented. The results of the current method are validated against flux-limiting finite volume schemes. The numerical results verify the efficiency and accuracy of the investigated method. The proposed scheme gives more resolved solutions than the high resolution finite volume schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.