Abstract

In this paper, a discontinuous Galerkin method for the two-dimensional time-harmonic Maxwell equations in composite materials is presented. The divergence constraint is taken into account by a regularized variational formulation and the tangential and normal jumps of the discrete solution at the element interfaces are penalized. Due to an appropriate mesh refinement near exterior and interior corners, the singular behaviour of the electromagnetic field is taken into account. Optimal error estimates in a discrete energy norm and in the L 2 -norm are proved in the case where the exact solution is singular.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.