Abstract

In this paper, we present a discontinuous Galerkin finite element method for solving the nonlinear Hamilton--Jacobi equations. This method is based on the Runge--Kutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high-order accuracy with a local, compact stencil, and is suited for efficient parallel implementation. One- and two-dimensional numerical examples are given to illustrate the capability of the method. At least kth order of accuracy is observed for smooth problems when kth degree polynomials are used, and derivative singularities are resolved well without oscillations, even without limiters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.