Abstract

Abstract Inspired by medical applications of high-intensity ultrasound we study a coupled elasto-acoustic problem with general acoustic nonlinearities of quadratic type as they arise, for example, in the Westervelt and Kuznetsov equations of nonlinear acoustics. We derive convergence rates in the energy norm of a finite element approximation to the coupled problem in a setting that involves different acoustic materials and hence jumps within material parameters. A subdomain-based discontinuous Galerkin approach realizes the acoustic-acoustic coupling of different materials. At the same time, elasto-acoustic interface conditions are used for a mutual exchange of forces between the different models. Numerical simulations back up the theoretical findings in a three-dimensional setting with academic test cases as well as in an application-oriented simulation, where the modeling of human tissue as an elastic versus an acoustic medium is compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.