Abstract

The deformation space of a branched cover $f:(S^2,A)\to (S^2,B)$ is a complex submanifold of a certain Teichmüller space, which consists of classes of marked rational maps $F:(\mathbb{P}^1,A')\to (\mathbb{P}^1,B')$ that are combinatorially equivalent to $f$. In the case $A=B$, under a mild assumption on $f$, William Thurston gave a topological criterion for which the deformation space of $f:(S^2,A)\to (S^2,B)$ is nonempty, and he proved that it is always connected. We show that if $A\subsetneq B$, then the deformation space need not be connected. We exhibit a family of quadratic rational maps for which the associated deformation spaces are disconnected; in fact, each has infinitely many components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call