Abstract
Dynamic programming is a classical programming technique, applicable in a wide variety of domains such as stochastic systems analysis, operations research, combinatorics of discrete structures, flow problems, parsing of ambiguous languages, and biosequence analysis. Little methodology has hitherto been available to guide the design of such algorithms. The matrix recurrences that typically describe a dynamic programming algorithm are difficult to construct, error-prone to implement, and, in nontrivial applications, almost impossible to debug completely. This article introduces a discipline designed to alleviate this problem. We describe an algebraic style of dynamic programming over sequence data. We define its formal framework, based on a combination of grammars and algebras, and including a formalization of Bellman's Principle. We suggest a language used for algorithm design on a convenient level of abstraction. We outline three ways of implementing this language, including an embedding in a lazy functional language. The workings of the new method are illustrated by a series of examples drawn from diverse areas of computer science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.