Abstract

The binding of hematogenously borne malignant cells that express the carbohydrate sialyl Lewis X (sLe(X)) to selectin adhesion receptors on leukocytes, platelets, and endothelial cells facilitates metastasis. The glycosylation inhibitor, per-O-acetylated GlcNAcbeta1,3Galbeta-O-naphthalenemethanol (AcGnG-NM), inhibits the biosynthesis of sLe(X) in tumor cells. To evaluate the efficacy of AcGnG-NM as an antimetastatic agent, we examined its effect on experimental metastasis and on spontaneous hematogenous dissemination of murine Lewis lung carcinoma and B16BL6 melanoma cells. Tumor cells were treated in vitro with AcGnG-NM, and the degree of selectin ligand inhibition and experimental metastasis was analyzed in wild-type and P-selectin-deficient mice. Conditions were developed for systemic administration of AcGnG-NM, and the presence of tumor cells in the lungs was assessed using bromodeoxyuridine labeling in vivo. The effect of AcGnG-NM on inflammation was examined using an acute peritonitis model. In vitro treatment of Lewis lung carcinoma cells with AcGnG-NM reduced expression of sLe(X)- and P-selectin-dependent cell adhesion to plates coated with P-selectin. Treatment also reduced formation of lung foci when cells were injected into syngeneic mice. Systemic administration of the disaccharide significantly inhibited spontaneous dissemination of the cells to the lungs from a primary s.c. tumor, whereas an acetylated disaccharide not related to sLe(X) in structure had no effect. AcGnG-NM did not alter the level of circulating leukocytes or platelets, the expression of P-selectin ligands on neutrophils, or sLe(X)-dependent inflammation. Taken together, these data show that AcGnG-NM provides a targeted glycoside-based therapy for the treatment of hematogenous dissemination of tumor cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call